Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}$, a onedimensional aluminophosphate

S. Phan Thanh, ${ }^{\text {a }}$ J. Marrot, ${ }^{\text {b }}$ J. Renaudin ${ }^{\text {a }}$ and V. Maisonneuve ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ Laboratoire des Fluorures - UPRES-A 6010 Faculté des Sciences, Université du Maine, Avenue Olivier-Messiaen, 72085 Le Mans CEDEX 9, France, and ${ }^{\text {b }}$ Institut Lavoisier, IREM, UMR CNRS C 8637, Université de Versailles Saint-Quentin-enYvelines, 45 Avenue des Etats Unis, 75035 Versailles CEDEX, France
Correspondence e-mail: vincent.maisonneuve@univ-lemans.fr

Received 2 May 2000
Accepted 16 June 2000
The structure of the title compound, pentane-1,5-diammonium aluminium(III) hydrogen bis(phosphate), $\left(\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}\right)$ [Al$\left.\mathrm{P}_{2} \mathrm{O}_{8} \mathrm{H}\right]$, obtained solvothermally at 473 K , has been determined by single-crystal X-ray diffraction. It consists of onedimensional $\left[\mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}\right]^{2-}$ macroanions, connected to each other by pentanediammonium cations. Contrary to similar compounds with $\mathrm{P} / \mathrm{Al}=2$, the three-dimensional structure is mainly obtained via a network of hydrogen bonds.

Comment

The investigation of the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{3} \mathrm{PO}_{4}$-aliphatic diamineEtOH system led to a new one-dimensional aluminophosphate templated by pentane-1,5-diamine. The structure of $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}$, (I), consists of inorganic chains, formulated as $\left[\mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}\right]^{2-}$, separated by organic molecules (Fig. 1a). The inorganic part is built up from tetrahedral AlO_{4} and PO_{4} units, in which all AlO_{4} vertices are connected. This arrangement forms a corner-shared $\mathrm{Al}_{2} \mathrm{P}_{2}$ four-membered ring with $\mathrm{PO}_{4} \mathrm{H}$ groups. The $\mathrm{Al}-\mathrm{O}$ distances, ranging from 1.727 (3) to 1.731 (3) \AA, and the $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ angles, lying between 106.4 (2) and $111.3(2)^{\circ}$, are consistent with those found in the mineral berlinite. In contrast, the $\mathrm{P}-\mathrm{O}$ distances vary from 1.490 (3) to 1.539 (3) \AA and from 1.499 (3) to 1.546 (3) \AA for the P1 and P2 phosphate groups, respectively. This dispersion is attributable to multiple-bond character. Pentane-1,5-diamine molecules, which must be protonated to balance the negative charges, ensure the cohesion between inorganic chains via hydrogen bonds. All the protons of the ammonium cations are linked to terminal O atoms of the $\mathrm{PO}_{4} \mathrm{H}$ group. According to $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond lengths for the two amine functions, the N1 terminal group is more strongly connected to the inorganic chains. Details of the hydrogen bonding are given in Table 2. $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{3}\right]^{2+}$ cations present a bent conformation because of their size. In this case, the atomic displacement parameters of the C atoms are rather large, especially in the central part (atoms C3 and C4) of the
molecule (Fig. 2). This situation is the complete opposite of that observed in $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}\right] \cdot \mathrm{AlF}_{5}$ (Phan Thanh et al., 2000), where the diammonium cation exhibits a stretched conformation between the AlF_{5} inorganic chains. In addition, in the compound called ULM13, both the bent and stretched conformations for the 1,6-diaminohexane molecules can be observed (Renaudin \& Férey, 1995).

Up to now, two types of chain architecture for the onedimensional aluminophosphates, with a P / Al ratio of 2 in the formulation, have been reported in the literature: $\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}$ (Williams et al., 1997) shows a one-dimensional polymer chain consisting of edge-shared $\mathrm{Al}_{2} \mathrm{P}_{2}$ four-membered rings, with pendant $\mathrm{PO}_{4} \mathrm{H}$ side groups, whereas $\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$ (Wang et al., 1990),

Figure 1
The projection of the title compound along (a) the c axis, showing its onedimensional character and the bent conformation of the diammonium cation, and (b) the a axis. PO_{4} tetrahedra are hatched.

Figure 2
An ORTEP-3 view (Farrugia, 1997) of the pentanediammonium cation in the title compound. Displacement ellipsoids are shown at the 50% probability level.
$\left[\mathrm{Et}_{3} \mathrm{NH}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}_{2}$ (Jones et al., 1990) and $\left[\mathrm{NH}_{4}\right]\left[\mathrm{H}_{3} \mathrm{NCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8}$ (Gao et al., 1996) present a linear arrangement of corner-shared $\mathrm{Al}_{2} \mathrm{P}_{2}$ four-membered rings similar to that in (I). However, the greater size of the diammonium cation in (I) leads to a distorted inorganic chain. On one hand, the small size of the organic molecule in these four compounds leads to a three-dimensional organization ensured by a combination of van der Waals forces and hydrogen bonds. On the other hand, in the title compound, the structure accommodates the more significant length of the organic chain by a distortion of both the organic part and the inorganic chain. Consequently, the three-dimensional character is then obtained mainly by the set of hydrogen bonds (Fig. 1b). It was also noticed that this involves a shortening of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ distance, from 2.641 (2) \AA in $\left[\mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3}\right] \cdot \mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}$ to 2.457 (4) \AA in (I).

Experimental

The title compound was prepared from a starting mixture of aluminium isopropoxide $\left\{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHO}\right]_{3} \mathrm{Al}\right\}-\mathrm{H}_{3} \mathrm{PO}_{4}$-pentane-1,5-di-amine-EtOH with the molar ratio 1:2:5:100 under solvothermal conditions ($473 \mathrm{~K}, 7 \mathrm{~d}$, autogenous pressure) in a Teflon-lined autoclave. The resulting product was filtered and dried in air at 353 K for 1 h . A suitable single crystal was isolated by optical microscopy. The crystal cell of (I) was obtained from long-exposure rotation photographs. Systematic extinction conditions led to the $P 2_{1} / n$ space group.

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{16} \mathrm{~N}_{2}\right)\left[\mathrm{AlP}_{2} \mathrm{O}_{8} \mathrm{H}\right]$
$M_{r}=322.13$
Monoclinic, $P 2_{1} / n$
$a=7.8783(2) \AA$
$b=10.46890(10) \AA$
$c=16.0680$ (4) A
$\beta=95.1470(10)^{\circ}$
$V=1319.90(5) \AA^{3}$
$Z=4$

Data collection

Siemens SMART diffractometer ω scans
Absorption correction: semi-
empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.844, T_{\text {max }}=0.978$
8939 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.136$
$S=1.080$
2521 reflections
167 parameters
H -atom parameters constrained

```
\(D_{x}=1.621 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 5007
        reflections
\(\theta=2.32-29.83^{\circ}\)
\(\mu=0.429 \mathrm{~mm}^{-1}\)
\(T=296\) (2) K
Parallelepiped, colorless
\(0.12 \times 0.06 \times 0.05 \mathrm{~mm}\)
```

3421 independent reflections
1901 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.038$
$\theta_{\text {max }}=29.83^{\circ}$
$h=-10 \rightarrow 10$
$k=-14 \rightarrow 13$
$l=-21 \rightarrow 9$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0573 P)^{2}\right. \\
& \quad+3.0698 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.36 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.60 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL93 } \\
& \quad \text { (Sheldrick, 1993) } \\
& \text { Extinction coefficient: } 0.0130(77)
\end{aligned}
$$

For the refinement of the H atoms of the CH_{2} and NH_{3} groups, geometrical restraints were used that implied equal distances ($\mathrm{N}-\mathrm{H}=$ $0.89 \AA$ and $\mathrm{C}-\mathrm{H}=0.97 \AA$) and angles to the central atom (AFIX option). H atoms of the CH_{2} and NH_{3} groups were refined with a common isotropic displacement parameter. The Fourier map showed a relatively large electron-density peak of 1.36 e \AA^{-3} at distances of 0.94 and $1.28 \AA$ from H5A and C5, respectively.

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

P1-O6	$1.490(3)$	$\mathrm{Al1-O} 1$	$1.729(3)$
$\mathrm{P} 1-\mathrm{O} 8$	$1.533(3)$	$\mathrm{Al1-O} 8^{\mathrm{ii}}$	$1.731(3)$
$\mathrm{P} 1-\mathrm{O} 5$	$1.537(3)$	$\mathrm{Al1-O}$	$1.731(3)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.539(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.483(8)$
$\mathrm{P} 2-\mathrm{O} 7$	$1.499(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.512(8)$
$\mathrm{P} 2-\mathrm{O} 4$	$1.525(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.509(9)$
$\mathrm{P} 2-\mathrm{O} 3^{\mathrm{i}}$	$1.530(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.503(9)$
$\mathrm{P} 2-\mathrm{O} 1$	$1.546(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.484(9)$
Al1-O5	$1.727(3)$	$\mathrm{C} 5-\mathrm{N} 2$	$1.459(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.5(5)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$114.4(9)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$116.8(7)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 4$	$117.0(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$127.0(9)$		
Symmetry codes: (i) $-x, 2-y,-z ;$ (ii) $1-x, 2-y,-z$.			

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.67	$2.457(4)$	160
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	2.00	$2.885(5)$	177
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 6$	0.89	1.89	$2.745(5)$	162
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 7^{\mathrm{iii}}$	0.89	1.86	$2.727(5)$	163
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\text {iv }}$	0.89	1.88	$2.750(5)$	165
$\mathrm{~N} 2-\mathrm{H} 2 D \cdots 4^{\mathrm{v}}$	0.89	2.05	$2.869(5)$	153
$\mathrm{~N} 2-\mathrm{H} 2 E \cdots \mathrm{O}^{\text {iv }}$	0.89	1.98	$2.861(6)$	171

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $1+x, y, z ;(\mathrm{v}) \frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL96 (Siemens, 1996); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: DIAMOND (Bergerhoff, 1996) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL96.

The authors thank Professor M. Leblanc and R. Retoux for useful advice on this manuscript and Dr T. Loiseau for his help.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1096). Services for accessing these data are described at the back of the journal.

References

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gao, Q., Chen, J., Li, S., Xu, R., Thomas, J. M., Light, M. \& Hursthouse, M. B. (1996). J. Solid State Chem. 127, 145-150.

Jones, R. H., Thomas, J. M., Xu, R., Huo, Q., Xu, Y., Cheetham, A. K. \& Bieber, D. (1990). J. Chem. Soc. Chem. Commun. pp. 1170-1172.
Phan Thanh, S., Renaudin, J. \& Maisonneuve, V. (2000). Solid State Sci. 2, 143148.

Renaudin, J. \& Férey, G. (1995). J. Solid State Chem. 120, 197-203.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Siemens (1996). SMART and SHELXTL96. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, T., Yu, L. \& Pang, W. (1990). J. Solid State Chem. 89, 392-395.
Williams, I. D., Xu, J., Gao, Q., Chen, J. \& Xu, R. (1997). Chem. Commun. pp. 1273-1274.

